Academic Credentials
  • Ph.D., Aerospace Engineering, University of Michigan, Ann Arbor, 2017
  • M.S., Aerospace Engineering, University of Michigan, Ann Arbor, 2013
  • B.S., Aerospace Engineering, University of Iceland, 2012
Licenses & Certifications
  • Professional Engineer Mechanical, California, #39937
Professional Affiliations
  • American Institute of Aeronautics and Astronautics (AIAA) member
  • Icelandic

Dr. Thorsson specializes in fracture mechanics with a focus on composite materials. He has extensive experience in mechanical testing of materials as well as finite element analysis (FEA). 

Dr. Thorsson's previous work includes material characterization at various loading rates for a range of material systems, including but not limited to fiber-reinforced polymer matrix composites, textiles, and sandwich structures.

He specializes in failure analysis of composite structures in various industry applications such as in aerospace, automotive, naval, wind energy, sports equipment and more. He has comprehensive experience in analyzing the impact response of composite materials. Investigating the resulting impact damage and residual strength of the structure. His contribution to the field of aerospace engineering with his study on barely visible impact damage (BVID), and the effect it has on the structural integrity of aerospace structures, has been well received in industry and academia.

Dr. Thorsson has broad experience with laboratory equipment for both mechanical testing and inspection of material microstructure or failure modes. Mechanical testing experience includes the use of equipment such as hydraulic load frames and grips, screw driven load frames, pressurized gas testing equipment (ballistic and high-strain rate equipment such as shock tubes, projectiles, and Split-Hopkinson Pressure Bar systems), drop weight apparatus, and material abrasion equipment. Dr. Thorsson has experience using a variety of destructive and non-destructive inspection (NDI) methods for microstructure and damage/failure evaluation, inspection methods include microscopic inspection, ultrasound scanning (C-scan), and computed tomography (CT) scanning.

Dr. Thorsson is interested in additive manufacturing of large composite structures using methods such as automated tape laying (ATL) and automated fiber placement (AFP). He is also interested in 3D printing technologies and the ever growing use of 3D printed components in structural application.

Dr. Thorsson received his Ph.D. from the Aerospace Department at the University of Michigan. His research focused on the impact response and damage of carbon fiber reinforced polymer matrix composites, with a particular focus BVID. The research involved a wide range of experimental testing, including, but not limited to, material characterization of various high-grade composite materials, impact, and compression after impact testing of aerospace grade laminated composites, crush worthiness of woven composite tubes for the car industry and more. The research topic also involved using FEA to accurately predict the impact response, damage extent and consecutively the compressive strength after impact (CSAI) of the structure. Dr. Thorsson developed an efficient high-fidelity shell based computational approach that captures the full field (in-plane) damage and failure of a composite laminate using a combination of energy based failure models and discrete cohesive element modeling. The model successfully captured the experimental impact response and damage in great detail which then lead to an accurate prediction for the CSAI for a wide variety of composite laminate systems.